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Dual-Mode Quasi-Elliptic-Function Bandpass
Filters Using Ring Resonators With
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Abstract—A novel microwave dual-mode quasi-elliptic-function
bandpass filter structure has been designed and fabricated. The
filter uses -shaped coupling arms for enhanced coupling and
dual-mode excitation. The effects of varying the length of tuning
stubs and gap size between tuning stubs and ring resonator have
been studied. Filters using multiple cascaded ring resonators
with high rejection band are presented. The new filters have been
verified by simulation and measurement with good agreement.

Index Terms—Bandpass filter, dual mode, enhanced coupling,
quasi-elliptic function, ring resonator.

I. INTRODUCTION

T HE microstrip ring resonator has been widely used to
evaluate phase velocity, dispersion, and effective dielec-

tric constant of microstrip lines. The main attractive features of
the ring resonator are not only limited to its compact size, low
cost, and easy fabrication, but also presents narrow passband
bandwidth and low radiation loss. Many applications, such
as bandpass filters, oscillators, mixers, and antennas using
ring resonators have been reported [1]. Moreover, most of
the established bandpass filters were built by dual-mode ring
resonators, which were originally introduced by Wolff [2].
The dual-mode consists of two degenerate modes, which are
excited by asymmetrical feed lines, added notches, or stubs
on the ring resonator [1]–[3]. The coupling between the two
degenerate modes is used to construct a bandpass filter. By
proper arrangement of feed lines, notches, or stubs, the filter can
achieve Chebyshev, elliptic, or quasi-elliptic characteristics.
Recently, one interesting excitation method using asymmetrical
feed lines with lumped capacitors at input and output ports to
design a bandpass filter was proposed [4].

Low insertion loss, high return loss, and high rejection band
are the desired characteristics of a good filter. However, a con-
ventional end-to-side coupling ring resonator suffers from high
insertion loss, which is due to the circuit’s conductor, dielectric,
radiation losses, and an inadequate coupling between feeders
and the ring resonator. The size of the coupling gap between
ring resonator and feed lines affects the strength of coupling
and the resonant frequency [1]. For instance, for a narrow cou-
pling gap size, the ring resonator has a tight coupling and can
provide a low insertion loss, but the resonant frequency will be
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influenced greatly and for a wide gap size, the resonator has
a high insertion loss and the resonant frequency is slightly af-
fected. In order to improve the insertion loss, some structures
have been published to enhance the coupling strength of ring
resonators [5]–[8]. Several recent developments of the ring res-
onator using high-temperature superconductor (HTS) thin-film
and micromachined circuit technologies have been presented
[9]–[11]. This approach has the main advantage of very low con-
ductor loss and, therefore, a low insertion loss is expected. In ad-
dition, some configurations are suggested to use active devices
combined into the ring resonator to provide gain to compensate
for the loss [12], [13]. In this paper, novel quasi-elliptic-func-
tion bandpass filters using microstrip ring resonators with low
insertion loss have been developed. An-shaped coupling arm
was introduced to enhance the coupling and to generate per-
turbation for dual-mode excitation. The effects of the coupling
gap and stub length have been studied. Filters using one , two,
and three ring resonators are demonstrated and compared. These
new types of bandpass filters have been verified by simulation
and measurement. Both simulated and measured results exhibit
good agreement.

II. DUAL-MODE BANDPASS FILTER USING A

SINGLE RING RESONATOR

The basic structure of the proposed dual-mode filter is shown
in Fig. 1(a). The square ring resonator is fed by a pair of orthog-
onal feed lines and each feed line is connected to an-shaped
coupling arm. Fig. 1(b) displays the scheme of the coupling arm
that consists of a coupling stub and a tuning stub. The tuning
stub is attached to the end of the coupling stub. As seen from
the circuit layout, the tuning stub extends the coupling stub to
increase the coupling periphery. In addition, the asymmetrical
structure perturbs the field of the ring resonator and excites two
degenerate modes [2]. Without the tuning stubs, there is no per-
turbation on the ring resonator and only a single mode is ex-
cited [14]. Comparing the new filter with conventional ones [1],
which use perturbing notches or stubs inside the ring resonator,
the conventional filters only provide dual-mode characteristics
without the benefits of enhanced coupling strength and perfor-
mance optimization.

The new filter was designed for the center frequency of
1.75 GHz and fabricated on a 50-mil-thick RT/Duroid 6010.2
substrate with a relative dielectric constant . The
length of the tuning stubs is and the gap size between
the tuning stubs and ring resonator is. The length of the
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(a)

(b)

Fig. 1. New bandpass filter. (a) Layout. (b)L-shaped coupling arm.

feed lines is mm, the width of the microstrip line is
mm for a 50- line, the length of the coupling

stubs is mm, the gap size between the ring
resonator and coupling stubs is mm, and the length of
one side of the square ring resonator is mm. The
dimension of the ring was designed for first-mode operation at
the passband center frequency. The coupling gapwas selected
in consideration of strong coupling and etching tolerance. The
simulation was completed using the IE3D electromagnetic
simulator, which gives a full-wave solution using integral
equations and the method of moments.1

By adjusting the length and gap size of the tuning stubs
adequately, the coupling strength and the frequency response
can be optimized. Single-mode excitation (Fig. 2) or dual-mode
excitation (Fig. 3) can be resulted by varyingand . Figs. 2
and 3 show the measured results for five cases from changing
the length of tuning stubs with a fixed gap size ( mm)
and varying the gap sizewith a fixed length ( mm).
Observing the measured results in Fig. 2, two cases for
and mm with a fixed gap size only excite a single mode. The
coupling between the arms and the ring can be expressed by
external as follows [15]:

(1)

where is the loaded , is the unloaded of the ring res-
onator, is the resonant frequency, and is the 3-dB
bandwidth. The unloaded for the square ring res-
onator can be obtained from the measurement using the circuit
shown in Fig. 4. From (1), is given by

(2)

1IE3D Version 6.1, Zeland Software Inc., Fremont, CA, 1998.

(a)

(b)

Fig. 2. Measured: (a)S21 and (b)S11 by adjusting the length of the tuning
stubL with a fixed gap size (s = 0:8 mm).

The performance for these two single-mode ring resonators
is shown in Table I. On the other hand, the three cases shown in
Fig. 3 by varying gap size with a fixed length mm
generate dual-mode characteristics. The coupling coefficient be-
tween two degenerate modes is given by [11]

(3)

where and are the resonant frequencies. In addition, the
midband insertion loss corresponding to , , and can
be expressed as [15]

dB (4)

The external can be obtained from (4) through measured,
, and . Moreover, the coupling coefficient between two de-

generate modes shows three different coupling conditions. Let

(5)

If the coupling coefficient satisfies , then the cou-
pling between two degenerate modes is overcoupled. In this
overcoupled condition, the ring resonator has a hump response
with a high insertion loss in the middle of the passband [16]. If
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(a)

(b)

Fig. 3. Measured: (a)S21 and (b)S11 by varying the gap sizes with a fixed
length of the tuning stubs (L = 13:5 mm).

Fig. 4. Square ring resonator for the unloadedQ measurement.

, the coupling is critically coupled. Finally, if ,
the coupling is undercoupled. For both critically and undercou-
pled coupling conditions, there is no hump response. Also, when
the coupling becomes more undercoupled, the insertion loss in
the passband increases [15]. The performance for the dual-mode
ring resonators is displayed in Table II.

Observing the single-mode ring in Table I, it shows that a
higher external produces higher insertion loss and narrower
bandwidth. On the other hand, for the dual-mode ring resonator
in Table II, its insertion loss and bandwidth depend on the ex-
ternal , coupling coefficient , and coupling conditions. For
an undercoupled condition, the more undercoupled, the more
the insertion loss and the narrower the bandwidth. To obtain a
low insertion-loss and wide-band passband characteristic, the
single-mode ring resonator should have a low external, which

TABLE I
SINGLE-MODE RING RESONATOR

TABLE II
DUAL-MODE RING RESONATOR

implies more coupling periphery between the feeders and ring
resonator. Also, the dual-mode ring resonator can achieve the
same performance by selecting a proper externaland cou-
pling coefficient for an undercoupled coupling close to an
overcoupled coupling.

Fig. 5 shows the simulated and measured results for the op-
timized quasi-elliptic bandpass filter. It can be found that an
orthogonal-feed dual-mode ring resonator produces a quasi-el-
liptic characteristic [3], [17], [18]. As seen in Fig. 1, without the
tuning stubs , the fields of the ring are unaffected and the filter
exhibits a stopband at the fundamental resonant frequency [1].
With the tuning stubs, the fields of the ring are perturbed and
the ring can excite a dual mode. Also, two additional transmis-
sion zeros are generated. Both transmission zeros are located on
either side of the passband [1], [17]. This frequency response is
treated as a quasi-elliptic characteristic. In comparison of this
new filer in Fig. 1 with the conventional filer, which is con-
structed by one-element hairpin [19], edge-coupled, and inter-
digital microstrips [15], the new filter can provide a quasi-el-
liptic characteristic with a wide bandwidth, while the conven-
tional filter can only have a Chebyshev characteristic with a
narrow bandwidth.
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Fig. 5. Simulated and measured results for the case ofL = 13:5 mm and
s = 0:8 mm.

Fig. 6. Layout of the filter using two resonators withL-shaped coupling arms.

III. D UAL-MODE BANDPASS FILTER USING MULTIPLE

CASCADED RING RESONATORS

A. Dual-Mode Bandpass Filter Using Two Cascaded Ring
Resonators

Cascaded multiple ring resonators have advantages in
acquiring a much narrower and sharper rejection band than
the single ring resonator, and many bandpass filters using
multiple ring resonators are fabricated by HTSs [9]–[11].
Fig. 6 illustrates the circuit composed of two ring resonators.
This bandpass filter was built based on the mm
and mm case of the single ring resonator of Fig. 1.
Each filter section has the identical dimensions of the single
ring resonator. A short transmission line of 6.2 mm with
a width of mm connects to the coupling stubs to
link the two ring resonators. The energy transfers from one
ring resonator through the coupling and tuning stubs (or an

-shaped arm) and the short transmission line to another ring
resonator. Observing the configuration for the-shaped and
short transmission line in Fig. 6, it not only perturbs the ring
resonator, but can also be treated as a resonator. Considering
this type resonator in Fig. 7(a), it is consisted of a transmission
line and two parallel-connected open stubs. Its equivalent

(a)

(b)

Fig. 7. Back-to-backL-shaped resonator. (a) Layout. (b) Equivalent circuit.
The lengthsL andL include the open-end effects.

Fig. 8. MeasuredS21 for the back-to-backL-shaped resonator.

Fig. 9. Simulated and measured results for the filter using two resonators with
L-shaped coupling arms.

circuit is shown in Fig. 7(b). The input admittance is given
by

(6)
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Fig. 10. Layout of the filter using three resonators withL-shaped coupling
arms.

Fig. 11. Simulated and measured results for the filter using three resonators
with L-shaped coupling arms.

where

phase constant

is the characteristic admittance of the transmission line,
and is the characteristic admittances of the transmission lines

and . Letting , the resonant frequencies of the
resonator can be predicted. In Fig. 7, the resonant frequencies
of the resonator are calculated as , ,
and GHz within 1–3 GHz. To verify the resonant
frequencies, an end-to-side coupling circuit is built, as shown in
Fig. 8. Also, the measured resonant frequencies can be found as

, , and GHz, which
show a good agreement with calculated results.

Inspecting the frequency responses in Figs. 8 and 9, the spike
at GHz is suppressed by the ring resonators and
only one spike appears at low frequency ( GHz)
with a high insertion loss, which does not influence the
filter performance. Furthermore, the resonant frequency
( GHz) of the resonator in Fig. 7 couples with
the ring resonators. By changing the length, the resonant
frequencies will move to different locations. For a shorter
length , the resonant frequencies move to higher frequency
and for a longer length , the resonant frequencies shift to
lower frequency. Considering the filter performance, a proper
length should be carefully chosen. The filter has an insertion

TABLE III
FILTER PERFORMANCE

loss of 1.63 dB in the passband with a 3-dB bandwidth of
155 MHz.

B. Dual-Mode Bandpass Filter Using Three Cascaded Ring
Resonators

Fig. 10 illustrates the filter using three cascaded ring res-
onators. Any two of three resonators are linked by an-shaped
arm with a short transmission line of 6.2 mm with a width

mm. The simulated and measured results are shown
in Fig. 11. The filter has an insertion loss of 2.39 dB in the passp-
band with a 3-dB bandwidth of 145 MHz. Table III summarizes
the filter performance with one, two, and three ring resonators.

IV. CONCLUSIONS

A novel type of microwave dual-mode filter using square
ring resonators with an enhanced-shaped coupling arm has
been proposed. By changing the length of the tuning stubs
and gap sizes between the tuning stubs and ring resonator,
the insertion loss and frequency response of the filter can be
optimized. To acquire a low insertion-loss and wide-band pass-
band characteristic, the single-mode ring resonator should have
stronger coupling between the feeders and ring resonator. Also,
the dual-mode ring resonator should choose a proper external

and coupling coefficient to achieve the low insertion-loss
and wide-band passband characteristics. Filters using cascaded
ring resonators provide a sharp rejection band and narrow
passband bandwidth with quasi-elliptic characteristics.
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